The yeast SWI-SNF complex facilitates binding of a transcriptional activator to nucleosomal sites in vivo.

نویسندگان

  • L G Burns
  • C L Peterson
چکیده

The Saccharomyces cerevisiae SWI-SNF complex is a 2-MDa protein assembly that is required for the function of many transcriptional activators. Here we describe experiments on the role of the SWI-SNF complex in activation of transcription by the yeast activator GAL4. We find that while SWI-SNF activity is not required for the GAL4 activator to bind to and activate transcription from nucleosome-free binding sites, the complex is required for GAL4 to bind to and function at low-affinity, nucleosomal binding sites in vivo. This SWI-SNF dependence can be overcome by (i) replacing the low-affinity sites with higher-affinity, consensus GAL4 binding sequences or (ii) placing the low-affinity sites into a nucleosome-free region. These results define the criteria for the SWI-SNF dependence of gene expression and provide the first in vivo evidence that the SWI-SNF complex can regulate gene expression by modulating the DNA binding of an upstream activator protein.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SWI-SNF complex participation in transcriptional activation at a step subsequent to activator binding.

The SWI-SNF complex in yeast and related complexes in higher eukaryotes have been implicated in assisting gene activation by overcoming the repressive effects of chromatin. We show that the ability of the transcriptional activator GAL4 to bind to a site in a positioned nucleosome is not appreciably impaired in swi mutant yeast cells. However, chromatin remodeling that depends on a transcription...

متن کامل

Artificially recruited TATA-binding protein fails to remodel chromatin and does not activate three promoters that require chromatin remodeling.

Transcriptional activators are believed to work in part by recruiting general transcription factors, such as TATA-binding protein (TBP) and the RNA polymerase II holoenzyme. Activation domains also contribute to remodeling of chromatin in vivo. To determine whether these two activities represent distinct functions of activation domains, we have examined transcriptional activation and chromatin ...

متن کامل

Functional and Structural Dissection of the SWI/SNF Chromatin Remodeling Complex: A Dissertation

The yeast SWI/SNF complex is the prototype of a subfamily of ATP-dependent chromatin remodeling complexes. It consists of eleven stoichiometric subunits including Swi2p/Snf2p, Swi1p, Snf5p, Swi3p, Swp82p, Swp73p, Arp7p, Arp9p, Snf6p, Snf11p, and Swp29p, with a molecular weight of 1.14 mega Daltons. Swi2p/Snf2p, the catalytic subunit of SWI/SNF, is evolutionally conserved from yeast to human cel...

متن کامل

Architecture of the SWI/SNF-nucleosome complex.

The SWI/SNF complex disrupts and mobilizes chromatin in an ATP-dependent manner. SWI/SNF interactions with nucleosomes were mapped by DNA footprinting and site-directed DNA and protein cross-linking when SWI/SNF was recruited by a transcription activator. SWI/SNF was found by DNA footprinting to contact tightly around one gyre of DNA spanning approximately 50 bp from the nucleosomal entry site ...

متن کامل

Transcription activator interactions with multiple SWI/SNF subunits.

We have previously shown that the yeast SWI/SNF complex stimulates in vitro transcription from chromatin templates in an ATP-dependent manner. SWI/SNF function in this regard requires the presence of an activator with which it can interact directly, linking activator recruitment of SWI/SNF to transcriptional stimulation. In this study, we determine the SWI/SNF subunits that mediate its interact...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 17 8  شماره 

صفحات  -

تاریخ انتشار 1997